网上赌钱-盈乐博娱乐城_百家乐详解_sz新全讯网xb112 (中国)·官方网站

百年校慶杰出學(xué)者講座第49期-高維網(wǎng)絡(luò)卷積回歸模型下的遷移學(xué)習(xí)

時間:2025-05-13 16:40    來源:     閱讀:

主題Transfer Learning Under High-Dimensional Network Convolutional Regression Model高維網(wǎng)絡(luò)卷積回歸模型下的遷移學(xué)習(xí)

主講人中國人民大學(xué)統(tǒng)計學(xué)院 黃丹陽教授

主持人統(tǒng)計與數(shù)據(jù)科學(xué)學(xué)院 林華珍教授

時間5月14日16:00-17:00

地點(diǎn)柳林校區(qū)弘遠(yuǎn)樓408會議室

主辦單位:統(tǒng)計與數(shù)據(jù)科學(xué)學(xué)院 科研處

主講人簡介:

黃丹陽,中國人民大學(xué)統(tǒng)計學(xué)院教授,吳玉章青年學(xué)者,國家治理大數(shù)據(jù)和人工智能創(chuàng)新平臺北京市消費(fèi)大數(shù)據(jù)監(jiān)測子實(shí)驗(yàn)室主任。主持國家自然科學(xué)基金面上項(xiàng)目、北京市社會科學(xué)基金重點(diǎn)項(xiàng)目等科研課題,入選北京市科協(xié)青年人才托舉工程,曾獲北京市優(yōu)秀人才培養(yǎng)資助。從事復(fù)雜網(wǎng)絡(luò)模型、大規(guī)模數(shù)據(jù)計算等方向的理論研究,關(guān)注統(tǒng)計理論在中小企業(yè)數(shù)字化發(fā)展中的應(yīng)用。研究成果三十余篇發(fā)表于JRSSB、JASA、JOE、JBES等權(quán)威期刊。獨(dú)著專著《大規(guī)模網(wǎng)絡(luò)數(shù)據(jù)分析與空間自回歸模型》入選“京東統(tǒng)計學(xué)圖書熱賣榜”。獲北京高校青年教師教學(xué)基本功比賽二等獎、最受學(xué)生歡迎獎等多項(xiàng)教學(xué)獎勵。

內(nèi)容提要:

Transfer learning enhances model performance by utilizing knowledge from related domains, particularly when labeled data is scarce. While existing research addresses transfer learning under various distribution shifts in independent settings, handling dependencies in networked data remains challenging. To address this challenge, we propose a high-dimensional transfer learning framework based on network convolutional regression (NCR), inspired by the success of graph convolutional networks (GCNs). The NCR model incorporates random network structure by allowing each node’s response to depend on its features and the aggregated features of its neighbors, capturing local dependencies effectively. Our methodology includes a two-step transfer learning algorithm that addresses domain shift between source and target networks, along with a source detection mechanism to identify informative domains. Theoretically, we analyze the lasso estimator in the context of a random graph based on the Erd?s–Rényi model assumption, demonstrating that transfer learning improves convergence rates when informative sources are present. Empirical evaluations, including simulations and a real-world application using Sina Weibo data, demonstrate substantial improvements in prediction accuracy, particularly when labeled data in the target domain is limited.

遷移學(xué)習(xí)通過利用相關(guān)領(lǐng)域的知識來提升模型性能,尤其是在標(biāo)注數(shù)據(jù)稀缺的情況下。盡管現(xiàn)有研究解決了獨(dú)立設(shè)置中各種分布變化下的遷移學(xué)習(xí)問題,但處理網(wǎng)絡(luò)化數(shù)據(jù)中的依賴關(guān)系仍具挑戰(zhàn)性。為應(yīng)對這一挑戰(zhàn),主講人提出一種基于網(wǎng)絡(luò)卷積回歸(NCR)的高維遷移學(xué)習(xí)框架,其靈感源自圖卷積網(wǎng)絡(luò)(GCN)的成功。NCR 模型通過允許每個節(jié)點(diǎn)的響應(yīng)取決于其特征及其鄰居的聚合特征來納入隨機(jī)網(wǎng)絡(luò)結(jié)構(gòu),從而有效地捕捉局部依賴關(guān)系。主講人的方法包括一個兩步遷移學(xué)習(xí)算法,用于解決源網(wǎng)絡(luò)和目標(biāo)網(wǎng)絡(luò)之間的領(lǐng)域偏移問題,以及一個源檢測機(jī)制來識別信息豐富的領(lǐng)域。從理論上講,我們在基于 Erd?s—Renyi 模型假設(shè)的隨機(jī)圖背景下分析了套索估計器,證明當(dāng)存在信息豐富的源時,遷移學(xué)習(xí)可提高收斂速度。包括模擬實(shí)驗(yàn)和使用新浪微博數(shù)據(jù)的真實(shí)世界應(yīng)用在內(nèi)的實(shí)證評估表明,在目標(biāo)領(lǐng)域標(biāo)注數(shù)據(jù)有限的情況下,預(yù)測準(zhǔn)確性有顯著提高。

西南財經(jīng)大學(xué)  版權(quán)所有 webmaster@swufe.edu.cn     蜀ICP備 05006386-1號      川公網(wǎng)安備51010502010087號
百家乐官网庄不连的概率| 澳门百家乐官网规律星期娱乐城博彩 | 百家乐策略大全| 8大胜娱乐| 虚拟百家乐游戏下载| 南澳县| 华侨人百家乐的玩法技巧和规则| 猪猪网百家乐官网软件| 大发888大奖| 百家乐官网官网网址| 哈尔滨市| 百家乐追号工具| 百家乐官网如何抽千| E乐博娱乐城| 百家乐无损打法| 百家乐官网赌神| 大发888葡京下载地址| 嘉义县| 租房做生意如何注意风水问题| 大发888通宝| 百家乐官网筹码防伪| 百家乐官网赢新全讯网| 玩百家乐去哪个娱乐城最安全| 加州百家乐官网娱乐城| 大发888真钱游戏玩法| 成都南偏西24度风水| 百家乐官网玩法百科| 大发888娱乐平台| 百家乐怎么会赢| 云赢百家乐官网分析| 伊吾县| 德州扑克大师| 百家乐玩法介绍图片| 3U百家乐官网的玩法技巧和规则| 永利高百家乐官网现金网| 大发888游戏平台hgdafa888gw| 新濠百家乐现金网| 海王星百家乐官网技巧| 浙江省| 博狗博彩网站,| 威尼斯人娱乐城网址多少|